Monatshefte für Chemie 117, 465-470 (1986)

Zwei neue Oxopalladate: BaPdNd₂O₅ und BaPdSm₂O₅ mit planar koordinierten Pd²⁺-Ionen

Stephan Schiffler und Hanskarl Müller-Buschbaum*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, D-2300 Kiel, Bundesrepublik Deutschland

(Eingegangen 28. Juni 1985. Angenommen 29. Juli 1985)

New Oxocompounds with Planar Coordinated Pd^{2+} BaPdNd₂O₅ and BaPdSm₂O₅

Single crystals of BaPdNd₂O₅ (A), BaPdSm₂O₅ (B) and BaCuNd₂O₅ (C) were prepared by solid state reaction using BaCl₂ as a fusing assistant (A, B) or by high temperature Laser technique (C). X-ray investigations show tetragonal symmetry with A: a = 6.7387 (5), c = 5.9002 (25) Å, B: a = 6.6667 (13); c = 5.8800 (6) Å (space group D⁵_{4h} - P4/mbm, Z = 2). The formerly investigated compound (C) is refined here by single crystal data. (A) and (B) belong to the BaPtNd₂O₅-type. The results are discussed.

(Keywords: Barium; Palladium; Rare earth; Oxygen; Crystal structure)

Einleitung

Mit den Verbindungen BaPtNd₂O₅¹ und BaCuNd₂O₅² wurde ein neuer Bautyp entdeckt, der sowohl Pt²⁺ als auch Cu²⁺ in der ungewöhnlich seltenen isoliert quadratischen Sauerstoffkoordination enthält. Interessant ist die Beobachtung, daß analog zusammengesetzte Substanzen mit Platin bis zum Element Gadolinium erhalten werden konnten³, während mit Kupfer ab Samarium ein neuer Strukturtyp gebildet wird^{3,4}. Kürzlich wurde über BaNiNd₂O₅⁵ berichtet, welches trotz gleicher Bruttoformel einen völlig anderen Aufbau mit oktaedrisch koordiniertem Ni²⁺ besitzt. Die bisherigen Ergebnisse lassen erwarten, daß die Palladiumverbindungen ebenfalls planar koordinierte Pd²⁺-Ionen besitzen. Fraglich ist jedoch, ob in der Reihe BaPd*Ln*₂O₅ (*Ln* = Nd, Sm, Eu, Gd) ab Samarium ein Umbruch der Struktur erfolgt, wie es an den Kupferverbindungen beobachtet wurde.

Die leichte Zersetzbarkeit von PdO verhinderte bisher die Darstellung von Einkristallen der Zusammensetzung BaPd Ln_2O_5 (Ln = Nd - Tb). Diese Schwierigkeit konnte präparativ umgangen werden, so daß jetzt

³³ Monatshefte für Chemie, Vol. 117/4

über den Aufbau von BaPdNd₂O₅ und BaPdSm₂O₅ berichtet werden kann. Die Kristallstruktur von BaCuNd₂O₅² wurde mit Röntgenbeugungsmethoden an mikrokristallinem Material aufgeklärt. Auch hier ist es jetzt gelungen, Einkristalle zu präparieren, so daß die kristallographischen Daten verfeinert werden konnten.

Methodik

Darstellung von Einkristallen der Verbindungen BaPdNd₂O₅, BaPdSm₂O₅ und BaCuNd₂O₅

Die Synthese der Palladiumverbindungen BaPdLn₂O₅ ist von der Schwierigkeit geprägt, Einkristalle darzustellen, bevor PdO thermisch in die Elemente zerfällt. Feststoffreaktionen zwischen BaO, PdO und Lanthanoidoxiden (Ln2O3) führen nie zu Einkristallen, sondern bestenfalls zu mikrokristallinem Material. Zur Darstellung der Einkristalle wurde eine Reaktion in Gegenwart eines Mineralisators gewählt, wobei BaCl₂ besonders geeignet war, da es beim Erhitzen an Luft partiell in BaO übergeht. Dieses besonders reaktive BaO reagiert mit PdO und Ln₂O₃ zu den hier untersuchten Einkristallen. Erhitzt man beispielsweise PdO: $Nd_2O_3 = 1$: 1 mit einem Überschuß an BaCl₂ an Luft auf 800 °C, so entstehen innerhalb von 24h hellgelbe quaderförmige Einkristalle von BaPdNd₂O₅. Zur Darstellung der Einkristalle von BaCuNd₂O₅ wurden zunächst BaCO₃: CuO: Nd₂O₃ = 1:1:1 bei 1000 °C an Luft über 12 h zu mikrokristallinem Material der Zusammensetzung BaCuNd₂O₅ umgesetzt. Erhitzt man die bereits gebildete Verbindung kurzfristig mit einem CO₂-Laser auf 1 400-1 500 °C, so erschmilzt ein Teil des Preßlings, ohne daß die gebildete Verbindung thermisch zerstört wird. Aus dem Schmelzgut lassen sich tiefbraune Einkristalle isolieren, die ebenfalls mit der energiedispersiven Röntgenfluoreszenztechnik analytisch untersucht wurden (Elektronenmikroskop Jeol T200, EDX-System PGT-III).

Röntgenographische Untersuchung von BaPdNd₂O₅ und BaPdSm₂O₅

Mit Weissenbergaufnahmen und Vierkreisdiffraktometermessungen (Mo-K α) wurden die Gitterkonstanten und systematisch beobachtbaren Reflexe bestimmt.

BaPdNd₂O₅:
$$a = 6.7387(5)$$
, $c = 5.9002(27)$ Å.
BaPdSm₂O₅: $a = 6.6667(15)$, $c = 5.8800(6)$ Å.

Die Auslöschungsbedingungen [(hkl), (hk0) und (hhl) alle vorhanden; (0kl) nur mit <math>k = 2n und (h00) mit h = 2n] führen zu den Raumgruppen $D_{4h}^5 - P4/mbm$, $D_{2d}^7 - P\overline{4}b2$ und $C_{4v}^2 - P4bm$. An 277 symmetrieunabhängigen Reflexen (mit $F_0^\circ > 6 \cdot \sigma F_0$) wurden die Parameter von BaPdNd₂O₅ und an 308 Reflexen unter gleichen Bedingungen die Parameter von BaPdSm₂O₅ in der höchstsymmetrischen Raumgruppe P4/mbm verfeinert. Tabelle 1 gibt eine Zusammenstellung der Atomparameter bei isotroper Verfeinerung der Temperaturfaktoren wieder. Die Gütefaktoren betragen ohne weitere Korrekturen:

BaPdNd₂O₅
$$R_{(hkl)} = 0.057$$
,
BaPdSm₂O₅ $R_{(hkl)} = 0.065$.

Eine Zusammenstellung der beobachteten und berechneten Strukturfaktoren erfolgt aus Platzgründen an anderer Stelle³.

Aus den Werten von Tabelle 1 berechnen sich die in Tabelle 2 zusammengestellten wichtigsten Metall-Sauerstoff-Abstände. Die Verfeinerung der kristallographischen Daten von BaCuNd₂O₅ ergab:

$$a = 6.7027(5), c = 5.8194(40)$$
 Å.

In Tabelle 3 sind die Atomparameter zusammengestellt. Tabelle 4 gibt die wichtigsten Metall-Sauerstoff-Abstände wieder. Für 194 symmetrieunabhängige Reflexe beträgt der Gütefaktor R = 0.052.

Punkt	lage	x	у	Z	<i>B</i> [A ²]
Ba	(2 a)	0.0	0.0	0.0	0.31 (4)
Pd	(2 d)	0.0	0.5	0.0	0.04 (5)
Nd	(4 h)	0.1738 (2)	0.6738 (2)	0.5	0.05 (5)
O_I	(8 k)	0.360 (2)	0.860 (2)	0.749 (3)	0.56 (27)
O_I	(2 b)	0.0	0.0	0.5	0.72 (51)
BaPds	Sm_2O_5				
Ba	(2 a)	0.0	0.0	0.0	$\begin{array}{c} 0.41(4)\\ 0.14(4)\\ 0.18(2)\\ 0.61(24)\\ 0.60(45) \end{array}$
Pd	(2 d)	0.0	0.5	0.0	
Sm	(4 h)	0.1736 (2)	0.6736 (2)	0.5	
O _I	(8 k)	0.360 (2)	0.860 (2)	0.748 (3)	
O _I	(2 b)	0.0	0.0	0.5	

Tabelle 1. Atomparameter für BaPdNd₂O₅ und BaPdSm₂O₅ mit Standardabweichungen in Klammern; in der Raumgruppe $D_{4h}^5 - P4/mbm$ sind die angeführten Punktlagen besetzt

Tabelle 2. Interatomare Abstände [Å] für BaPdNd₂O₅ mit Standardabweichungen in Klammern; der 2. Wert in eckigen Klammern bezieht sich auf BaPdSm₂O₅

BaO _{II}	$2.950(1)(2 \times)$	Nd—O _I	$2.302(17)(2 \times)$
	$[2.940(1)(2\times)]$	Sm—O	$2.281(16)(2 \times)$
Ba—O ₁	2.994 (16) (8 ×)	Nd—O _{II}	$2.491(1)(2 \times)$
	$[2.971(15)(8 \times)]$	$Sm - O_{II}$	$2.465(1)(2\times)$
PdO ₁	$1.995(17)(4 \times)^{-1}$	NdO	$2.587(16)(4 \times)$
•	$[1.987(17)(4 \times)]$	$\mathrm{Sm}-\mathrm{O}_{\mathrm{I}}$	2.559 (15) (4 ×)
		-	

Tabelle 3. Atomparameter für BaCuNd₂O₅ mit Standardabweichungen in Klammern; Raumgruppe $D_{4h}^5 - P4/mbm$

Punktlage		x	у	Z	<i>B</i> [Å ²]
Ba	(2 a)	0.0	0.0	0.0	0.55 (6)
Cu	(2 d)	0.0	0.5	0.0	0.21 (9)
Nd	(4 h)	0.1739 (2)	0.6739 (2)	0.5	0.21 (3)
O_I	(8 k)	0.362 (2)	0.862 (2)	0.763 (3)	0.42 (28)
O_{II}	(2 b)	0.0	0.0	0.5	0.03 (46)

Tabelle 4. Interatomare Abstände für BaCuNd2O5 [Å] mit Standardabweichungen

BaO _{II}	$2.910(2)(2 \times)$	Nd—O _I	$2.345(16)(2 \times)$
Ba—O	2.940 (15) (8 ×)	Nd—O _{II}	$2.477(2)(2 \times)$
CuO _I	1.906 (17) (4 ×)	$Nd - O_I$	2.603 (16) (4×)

Ergebnisse und Diskussion

Die an BaPdNd₂O₅ und BaPdSm₂O₅ ausgeführten Kristallstrukturuntersuchungen zeigen, daß beide Verbindungen den Aufbau von BaPtNd₂O₅ (bzw. BaCuNd₂O₅) besitzen. Dennoch besteht bei den Palladiumverbindungen BaPd Ln_2O_5 (Ln = Nd - Tb) eine engere Verwandtschaft zu den formelgleichen Platinverbindungen, da innerhalb der Reihe der Lanthanoide kein Strukturwechsel vollzogen wird. Die Reihe der Kupferverbindungen BaCu Ln_2O_5 (Ln = Nd - Yb) besitzt ab Samarium einen neuen Strukturtyp⁴, der Cu²⁺ nicht mehr in planarer Sauerstoffkoordination enthält. Die Nachuntersuchung von BaCuNd2O5 an Eiskristallen bestätigt die früher² gefundene Raumgruppe, d. h. bis auf BaPtNd₂O₅ besitzen alle bisher untersuchten Substanzen der Zusammensetzung Ba ALn_2O_5 (A = Cu, Ln = Nd bzw. A = Pd, Ln = Nd - Tb) eine höhere Symmetrie, was sich auf die Gleichheit aller Ba-O-Abstände (der würfelförmigen Koordination) auswirkt. Obwohl die Kristallstruktur des BaPtNd₂O₅-Typs bereits beschrieben wurde^{1,2}, sei hier für den Vergleich mit anderen planar koordinierten Oxoverbindungen die Anordnung der eben gebauten PdO₄-Gruppen in einer Elementarzelle hervorgehoben. Abb. 1 zeigt, daß die planaren PdO₄-Einheiten isoliert und mit großem Abstand zueinander auftreten. In diesem Punkt ähneln die Verbindungen BaPdLn₂O₅ dem Kupfertantalat Cu₂Ta₂O₆⁶. Eine Wechselwirkung zwischen den PdO₄-Polyedern, wie sie bei eindimensionalen Leitern oder an Bi₂PdO₄⁷ diskutiert werden können, ist hier auszuschließen.

Interessant ist ferner, daß im direkten Vergleich der Verbindungen BaCuNd₂O₅, BaPdNd₂O₅ und BaPtNd₂O₅ der Einfluß der isolierten

Abb. 1. Perspektivische Darstellung der PdO₄-Gruppen und deren Anordnung in einer Elementarzelle (große Symbole mit Kreuz = Ba, kleine Symbole mit Kreuz = Nd, viertel ausgefüllte Symbole = Pd, leere Symbole = 0)

 MO_4 -Polyeder (M = Cu, Pd, Pt) auf das $[BaLn_2O_5]^{2-}$ -Gerüst studiert werden kann. Man erkennt an den unterschiedlichen Ba-O-Abständen (würfelförmige Koordinaten um Ba²⁺), daß die Abmessung der planaren MO_4 -Polyeder einen direkten Einfluß auf die Größe der BaO₈-Würfel hat, d. h. die ursprüngliche Annahme, daß Cu²⁺, Pd²⁺ oder Pt²⁺ formal in ein $[BaLn_2O_5]^{2-}$ -Gerüst eingelagert sind, ist nicht richtig, da strukturbestimmende Einflüsse der planaren Polyeder unübersehbar sind.

Alle Rechnungen wurden auf der elektronischen Rechenanlage (PDP 10) der Universität Kiel mit dem Programmpaket SHELX 76¹⁰ ausgeführt. Die Abbildung wurde mit einer modifizierten ORTEP-Version^{8,9} gezeichnet.

Dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft danken wir für die Unterstützung mit wertvollen Sachmitteln.

Literatur

- ¹ Schiffler S., Müller-Buschbaum Hk., Z. anorg. allg. Chem. 523, 63 (1985).
- ² Michel C., Er-Rakho L., Raveau B., Rev. Chim. Miner. 21, 85 (1984).
- ³ Schiffler S., geplante Dissertation, Kiel 1986.
- ⁴ Michel C., Raveau B., J. Solid State Chem. 43, 73 (1982).

- 470 St. Schiffler und H. Müller-Buschbaum: Zwei neue Oxopalladate

- ⁵ Schiffler S., Müller-Buschbaum Hk., Z. anorg. allg. Chem., im Druck.
 ⁶ Propach V., Z. anorg. allg. Chem. 435, 161 (1977).
 ⁷ Arpe R., Müller-Buschbaum Hk., Z. Naturforsch. 31 b, 1708 (1976).
 ⁸ Johnson C. K., Report ORNL-3794, Oak Ridge Nat. Lab., Tennessee 1965.
- ⁹ Plötz K.-B., Dissertation, Kiel 1982.
- ¹⁰ Sheldrick G., SHELX-Program for Crystal Structure Determination, Version 1. 1. 1976, Cambridge 1976.